

自主·创新·跨越

从1994年国际上正式推出智能交通系统 (ITS) 这 个名词算起,ITS已经走过了18年。时至今日,ITS已 经成为百姓出行的重要服务系统,也是交通运输重要的 应用系统。与此对应的是国际上ITS已经成为产业,它 既是现代交通运输产业的一部分,也是现代信息产业的

在今天的中国,ITS已经不是陌生的名词,它的许 多内容已经走进我们的生活。可以说中国的ITS在这近 20年的时间里,特别是近10年来,已经渗透到交通管理 与服务的各个方面,从简单到复杂,从实验室走向产 业,从专家的科研题目变成了解决交通问题的重要工具。

进入本世纪的第二个10年,我国加快建设现代交 通运输业离不开ITS。在新的历史起点和发展台阶上 , 中国智能交通需要主动适应环境变化以及交通运输发展 重点和方式的变化,充分考虑我国的经济发展水平、实 际需求、政策和管理环境以及新一代信息技术提供的装 备与能力,努力实现中国智能交通系统的自主发展、创 新发展和跨越发展。

我国的ITS已经有了很多应用,但是技术水平、效 益与预期仍然有很大差距,我们需要认真分析我国的情 况,避免盲目模仿,根据国家经济水平和社会需求,探 索自主发展的道路。

首先,我们必须清醒地看到我国人均国内生产总值 仅 5000 多美元,而发达国家提出智能交通系统时人均 国内生产总值都在2万至3万美元,因此发达国家的路 径我们无法重复;第二,我们人口和资源的条件不允许 我们发展以小汽车为主的交通模式;第三,我国人均国 内生产总值较低,但是我国国内生产总值总量已经是世 界第二,我们从经济上和工业基础上已经具备了自主发

我们要认识到将国内需求与国际技术前沿有效结合 的重要性,探索适合中国地域特点和国情的、符合中国 人消费习惯的、能够提高综合交通运输服务水平的智能 交通系统。

回顾和预测中国ITS的发展, 我认为中国的智能交通 系统将从以技术跟踪和试验应用为主的阶段转变为以技 术、应用和资本共同牵引发展的规模应用阶段。要转变以 科技项目为主要驱动的发展状况,需要交通运输部门和企 业加大在ITS方面的投资,更重要的是政府要创造环境, 吸引更多的企业投资ITS的建设和服务。ITS领域可以借 鉴中国高速公路的发展模式,引入银行资金和民营资本, 并构建起政府、企业和使用者利益取向相容的服务和运营 体系,探索一条有中国特色的ITS发展模式。

从近年来发达国家ITS的发展动态来看,世界各国 和企业都十分重视占领标准制高点,其目的是发展ITS 产业。从实际状况看,发达国家在生态 ITS (Eco-ITS)、车路合作系统、下一代交通信息服务等领 域都已开始部署,这对我们发展有自主知识产权的ITS 产业是一个挑战。我们也要看到,地面交通系统的地域 性极强,因此交通运输行业要充分利用这一特点,与信 息和通信行业充分合作,开发既符合技术发展潮流、又 拥有自主知识产权的智能交通系统技术与产品。特别要 将路侧系统作为我国发展自主知识产权的智能交通产业 的重要抓手,进而带动车载 ITS 产品的发展,为我国新 一代信息技术提供产业空间,为形成新一代综合运输体 系提供技术保障和条件。

(作者为国家智能交通系统工程技术研究中心主任)

近日,第十九届世界智能交通大会在奥地利 我国交通运输部公路科学研究院总工程 能交通系统工程技术研究中心主任王 笑京获得大会颁发的世界智能交通杰出成就奖, 成为获得此项世界大奖的第一位中国人。大奖的 背后,是世界智能交通领域对我国智能交通发展 成果的认可和褒奖。

近10年,是我国智能交通实现跨越发展的10 年。智能交通在缓解我国城市交通拥堵,方便百 姓出行的过程中发挥了重要作用。智能交通系统 的建设和应用直接服务于百姓出行,提高了交通 管理的水平,并带动了相关产业的发展。未来, 我国智能交通还将发挥更加重要的作用。

智能交通改变出行

稍一留心便会发现,近些年,我们的出行正 在悄然发生变化 以前乘坐公交车要上车买 票,地铁要先排队买票,通过入口处把票交给验 票员才能够上车或者入闸,如今一张公交卡在 手,上车后或者入闸前刷一下公交卡,便可以轻 松乘车;驾驶小轿车时,很少再会有人使用纸质 地图, 取而代之的是网络上的电子地图或者车载 导航地图,车载导航还能通过语音播报为我们指 路;道路旁的电子显示屏显示的是临近路段的实 时路况,绿色代表畅通,黄色代表缓慢,红色则 代表拥堵,司机可根据电子屏幕提示的信息选择 相对畅通的出行路线;行驶在高速公路上,如果 你的车上安装了ETC设备,便可以走ETC专用 车道,实现不停车收费,能够迅速通过收费站, 大量节约出行时间 加安全和便捷,而这些变化都指向

随着经济社会的快速发展,小汽车源源不断进入 家庭,保有量在10年间迅猛提升。小汽车进入家 庭的同时,也给城市交通带来了很多问题,最集 中的体现便是拥堵。

在缓解拥堵的众多解决之道中,以提升出行 效率见长的智能交通呼声很高。

车载导航能够为我们清晰地指明方向,驾驶 者行进在道路上就会心中有数,而不用再为找路左 顾右盼,在提高行车效率的同时也让行驶更安全。 10年前,或许不少人还不知道车载导航为何物, 而如今,这种产品已经 飞入寻常百姓家。数据 显示,2011年我国导航终端销售了1212万台, 其中车载导航一体机的销售量达到700多万台。

ETC是电子不停车收费系统的英文缩写。如 今,全国有越来越多的高速公路收费站设有ETC 通道,汽车不停车便能实现收费,这让高速公路 的通行效率大大提升。统计显示,1条ETC车道 的通行能力相当于1条普通收费车道的4倍。

2008年之后,安装有ETC的车辆逐渐多了 起来。目前,全国有24个省份实现基于国家标准 的 ETC 建设与发展,共建设 3700 条车道,全国 用户数量已经超过460万。在京津冀地区和长 三角 5省1市 (上海、江苏、浙江、安徽、福 建、江西)已经实现了ETC区域联网运营。近 日,交通运输部还启动了收费公路电子收费联网 运营与客户服务规范编制工作。可以预见,ETC 实现全国联网运营之后,1张ETC卡片就能畅行 全国各地高速公路。

如果更多的人选择公共交通,城市道路拥堵 将在一定程度上得到缓解。因此,大力发展公共 交通已经成为城市管理者们的共识。公共交通智 能化的一个重要体现就是公交IC卡的大规模使用 以及智能化的管理和调度。乘车时刷卡,我们就 可以轻松实现乘车。在很多城市,公交IC卡既能 用于地铁,也能用于公交车,方便大家实现换 乘。截至目前,北京市公交IC卡的发行量已超过 4000万张,全国公交IC卡发卡量则已经突破两 亿张。未来,公交信息服务系统还能够为公交乘 客提供车辆到站信息和换乘信息,智能调度系统 将随时监控车辆的运行,结合道路拥堵的信息调

智能服务无处不在

室外的电子显示屏能够通过 红、黄、绿 种颜色告诉我们临近道路是否通畅。交通指挥中 心的城市道路电子地图也能够通过 红、黄、 绿 3种颜色展现道路的实时通行情况,整个城市 何实现的呢?

也许你只能看见道路上方的电子显示屏,却 并不知道,在路口的各个方向和道路上有交通监 测仪器正在监控车流,在北京等大城市,主要道 路上每隔500米就有1组这样的设备;出租车上 装的GPS定位系统也成了监控车流速度的辅助手 而有了实时路况,红绿灯也能够实现电子控 即根据实时的流量选择交通信号灯的切换时 智能交通织起了一张无形的网,让城市交通 实时处于掌控之中。这张网其实就是智能交通综

经过多年的不懈努力,我国的智能交通综合 管理体系已经基本建立。 王笑京说,我国智能交 通的发展与交通建设同步进行。上世纪90年代后 期智能交通的发展开始起步, 十五 期间进行了 研发以及小规模的试验应用 , 十一五 时期 , 以 北京奥运会、上海世博会、广州亚运会等大型活 未来智能交通的发展将更加注重车与车之间、车 动为契机,以应用为导向,城市智能交通实现了。与路之间的信息交换,智能化车辆控制系统是主

2008年北京奥运会的一大亮点。 北京的城市交 时,会自动通知周边的车辆,后车可以尽可能避 通环境在当时能够得到明显改善,除了实施 单 免追尾;道路上出现交通事故时,事故车辆会发 双号限行 、 奥运专用车道 等管制措施以外 , 出警告 , 通过车与车或者车与路之间的高速通 智能交通管理系统的建设和应用也功不可没。奥 信,使其他车辆几乎在发生事故的同时就得到信 运期间,公交优先信号控制系统发挥了重要作善息,便于其他车辆及时采取措施或选择另外的路 用,北京市在公交车道和奥运专用道上建设了 126 个具有公交优先控制的信号灯路口,采用 RFID公交车辆检测技术,将检测到的特种车辆信 息传送给信号控制系统,系统根据当前路口的信 号放行状态和流量情况,缩短另一方向的放行信 号时间,或延长本方向的绿灯放行时间,使公交 车辆和奥运专用车辆在路口的延误时间最短,达 到优先放行的目的。

而在上海世博会期间,世博园在近200天内 接待了观众7000多万人,上海市既不限制外地车 进入也不实施 单双号限行 ,依靠智能交通系统 实现了全市交通的平稳运行,受到了上海市民和 国内外游客的一致好评。

大型活动给智能交通系统的发展提供了宝贵 经验。目前,北京市的综合交通管理体系以交通 综合信息平台为基础,集成了数据采集、信号控的信息,出行将变得越来越便利。

制、交通指挥和信息服务等多种功能。上海市也 形成了有自己特色的综合交通管理体系,将城市 地面道路、高架路和高速公路交通信息以及水运 信息均纳入其中,特别是在一些高架桥路段,室外 屏幕还能够提供通行提示,也就是能够告诉驾驶人 从上桥到下桥的大致时间,便于大家更加精确地 了解前方道路通行情况,合理选择路线。

未来出行将更便利

智能交通通过提供丰富的道路信息缓解了道 路的拥堵,也让行驶环境更加环保和安全。王笑 京说,ETC系统由于实现了不停车通过收费站, 减少了车辆的制动和再起步,仅仅这个过程就可 以减少二氧化碳排放50%以上,减少一氧化碳和 碳氢化合物排放约70%。而且ETC通道的通行效 率是普通通道的4倍,大规模建设ETC通道,能 够集约利用土地,也相当于节省了建设资金。车 载导航能够在行驶超速时报警提示驾驶员,电子 雷达能够在车辆靠近障碍物时实现报警。

为环保和安全做出贡献的同时,智能交通的 发展也带动了相关制造业和信息服务业的发展。 随着ETC应用范围的不断扩大,ETC控制机、不 停车收费感应器的研发和生产也随之风生水起。 而大量的智能信息需求让相关软件的研发成为需 要,交通信息的增值服务也给众多商家带来了不

智能交通的发展能够集约利用土地。特别是 与信息产业联系在一起,而非通过消耗能源破坏 环境实现发展。也就是说,智能交通能够带动经 济实现绿色增长。 王笑京总结道。

交通领域的发展与整个经济社会的发展相伴 相随。而随着我国经济社会发展的不断向前推 进,交通运输业仍然有很大的发展潜力。毋庸置

未米智能交通将向何处去?土关兄说,找国 要发展方向。比如,如果离前车太近,控制系统 人们曾称赞: 北京交通拥堵问题的缓解成为 会自动调节与前车的安全距离;前车紧急刹车 线;当车辆处于非安全状态时,即使驾驶员实施 并线或超车操作,汽车也可以自动启动安全保护 功能,并线和加速不能实现。

王笑京坦言,与智能交通发展关系密切的信 号控制系统、智能化车辆控制系统以及相关通信 和传感器技术研发是我国智能交通与一些发达国 家的差距之所在,也正是我国智能交通领域未来 的发展方向。

王笑京为我们描绘了这样的图景 也许在不 久的将来,随着宽带移动通信技术的发展,我们 在车内就能够清楚地看到前方道路通行的实时图 像、堵车的准确位置,如此精确的信息将更加便 于我们选择通行路线。王笑京表示,类似的变化 也许还会有许多,随着智能交通的进一步发展, 人们出行的过程中一定能够获取到更多、更完善

图 :第六届中国智能交通年会暨中国国际智能交通展览会上 观

众在参观低碳环保电子化汽车。

图 :ETC 专用车道。

图 第十二届多国城市交通展览会上 人们在参观智能车位锁 (资料图片)

滕学蓓摄